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This article considers codes for use in personal computer file transfer as control char-
acters, when only upper-case ASCII can be used to avoid dependence on unique machine
features and promote portability. If ten control functions are needed, a number used in
at least one protocol, we seek a subset of ten upper-case ASCII characters with good dis-
tance properties. The. control functions form themselves naturally into three groups, one
of two functions (ACK and NAK) and two of four. We wish to make ACK and NAK as
antipodal as possible (distance 6), make the distances within each of the other groups as
large as possible (4), and otherwise have as few 2's in the distance table as possible, recog-
nizing that only even distances can occur. We find the minimum and an assignment that
attains the minimum. The code is essentially unique. We also solve the analogous problem
for two groups of three control functions and one group of four.

. Introduction

Here we solve a simple coding problem in computer proto-
col design. People with personal computers want to exchange
binary files, but everyone owns a different machine. The
problem is that different machines interpret binary seven-
tuples differently. So when setting up communication, it may
be impossible to even pass the initial protocol characters to
the protocol-handling software. But there is a way out of this.
All personal computers agree on what to do with upper-case
ASCII. So in this article we restrict protocol control functions
to upper-case ASCIL. This permits communication to be estab-
lished between the two computers, after which the files can
then be transferred as straight binary files.

1Currently a graduate student at Harvard University
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Thus, we are in the follow'ing situation. We want to choose
upper-case ASCII subsets with good distance properties.
Before attempting this, we will note that ASCII here is ac-
tually 7 bits with even parity adjoined. However, two of the
8 bits are always equal in the upper-case alphabet. This means
that we really have a 6-bit code to choose (see Table 1).

Let us formulate this as a precise coding problem. A typical
protocol has 10 “block control functions.” Here we choose to
divide them into three groups, as in Table 2, a “2, 4, 4, Table.”

The rationale is that functions within groups need extra
protection from each other. This is because within groups,
the control functions are more likely to be confusable because
the protocol states typically result in outputs that can be or
tend to be in only one group. Furthermore, ACK and NAK
need to be as unconfusable as possible, to prevent false file
transfers.



Other groupings are possible, for example a “3, 3, 4 Table”
with NAK, ACK, QRY in Group 1, WT, ABH, ABW in

Group 2, and EOD, EOT, SOH, SOD in Group 3. We shall
consider this case as well.

Let us now formulate this as a coding problem. We are to
choose a subset of 10 of the 26 upper-case ASCII odd-parity
six-tuples (odd parity, because the invariable 10 has been
removed), with the following properties:

a) The distance of ACK and NAK is 6.

b) The minimum distance within Groups 1 and 2 should
be as large as possible.

~)
v)

This is for the 2, 4, 4 case. For the 3, 3, 4 case, we want the
distances within groups to all be at least 4 (this makes them all
4, it turns out), with as few distances of 2 as possible. We will
call a set of three code words of mutual distance 4 an equi-
lateral triangle and of four code words of mutual distance 4 a
regular tetrahedron, We note here that for both problems, it
turns out that the restriction to the 26 upper-case ASCII out
of the 32 odd-parity six-tuples did not hurt the distance table
any, as it turned out in these two cases. Thus we will talk
about the alphabet restriction no longer. Probabilistic argu-
ments can be given that make this not too surprising.

Il. Intermediate Results

Here we will for convenience revert to even-parity six-tuples
instead of odd parity. Call this set E. We shall use lower-case
Greek for the elements of E. Note that the Hamming distance
d between any two elements of E is even. This section presents
five propositions needed in deriving the optimal codes.

We want to solve the following two problems:

Problem 1: Find o, ay; 8, B8, B3, BasY1> Vg Y32 Y4 €E
such that

d(oy, ) =6

It

d(ﬁi’ﬁj) >4a l:] 1’ 25 3,49 Z?E] (l)

i]

d(’yl,'yl) > 4, i,j 13 2, 3>43 i?&]

and the number of 2’s in the distance table of ay, 0,58, 8,,
63a'64 Y1 YasV3s Ya is minimal.

Problem 2: Find &, a,, 0358, 85, 83571 Y2+ ¥3: Y2 €E
such that

d(ai, Ol]) = 4, i;] = 1) 2, 37 i # j
d@6) =4 /=123 i#] 5 ()
d(’yi, ’Yj) > 4, i:j = 17 25 3, 4, i * j

and the number of 2’s in the distance table of «;, &,, 0336,
62, 63 3 71 s 72, 73, Ya is minimal.

Five propositions will be useful in our search.

Proposition I: Leta,,a,,a; e Eandd(ay, 0y), d(ay, 03),
d(oy, 03) = 4. Thend(a,, ay) =d(e,, ag) =d(ag, 05) =4

Proof: Assume the contrary. Say d(eay, a,) > 4, ie., = 6.
Then oefz = a_’i where X means 1 = x for x = 0, 1. Thus, for
any a ¢ {0, 1},la - o} | =la - o} | (i.e., if one of them is O,
then the other is one and vice versa) and, hence, la - aizl +
la- o |=1.Then

6
8<d(a,, o) td(a,,a) =Y (lah - abl+ lef-af 1)

i=1
6
SNEE
i=1
This contradiction proves the proposition.

Proposition 1 shows that we can replace ‘> 4 by “=4”
everywhere in Problems (1) and (2).

Proposition 2: Let A = {v, 74,73, 74} be a regular tetra-
hedron. Then each column of the matrix

MR O R 7(®
(1) (6)

00) R 2

2D IO

has exactly two 0’s and two 1’s in it, and is unique up to per-
muting and conjugating (complementing modulo 2) columns.

Proof: We can assume without loss of generality that y, =
(0, 0, 0, 0, 0, 0); otherwise just conjugate the columns where
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¥{1) = 1, ie., replace 0 by 1 and 1 by O in those columns.
Then v,, v, and v, have exactly two O’s and four 1’s. By
permuting the columns we can make v, = (1, 1, 1, 1, 0, 0).
Now v, and 7, must have their last two positions be 11.
Otherwise their distance from vy, would be at most 2. By
permuting the first four columns we can make v, =
(1,1,0,0, 1, 1). Since d(v;, 74) = 4, v, must be equal to
(0,0,1,1,1,1).

Thus any regular tetrahedron can be obtained from
(0,0,0,0,0,0) = 7,
(1’ 1’ 1} 1’ 0’ 0) = 72
(1,1,0,0,1,1) = 7,
(0,0,1,1,1,1) = v,
by permuting and conjugating columns.

Since these operations preserve the property we are inter-
ested in (exactly 2 zeros in every column), it is sufficient to
check it just for the regular tetrahedron above. It, indeed, has
exactly two O’s in each column. Hence, any regular tetrahe-
dron also has this property. (Note that we can only conjugate

an even number of columns if the tetrahedron is to remain a
subset of E.)

Proposition 2 also follows from a more general result on
constant-distance codes, but we shall not do it this way.

Proposition 3. Let B = {B,, 8,, ﬁs} be an equilateral tri-
angle. Then the matrix ,

g B(lz) B
B 2
g . B®

has either one 0 and two 1’s or one 1 and two 0’s in each col-
umn, and is unique up to permuting and conjugating columns.

Proof: We apply the same argument as in Proposition 2.
The property we are interested in is again invariant under con-
jugations and permutations of columns. This operation allows
us to transform any equilateral triangle into
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(0,0,0,0,0,0) = 7,
(1’1,1,1’0’0) = 72

(1,1,0,0,1,1) = 7,

as we showed in the proof of Proposition 2. It is easy to see
that v, 75, and v, have the desired property.

Proposition 4. Let C = {y,,7v,,73, 74} be a regular tetra-
hedron of elements in E, and let y also be in E. Then

4
3 dlv.y) = 12
i=1

Proof: Proposition 2 implies that for ¢ ¢ {0, 1}, & =
1,2,...,6, we have

4
D a4 =2
i=1 ‘

for each column k. Thus

4
E |v8) -0 =2, 1<k<6

i=1

Adding these six equalities together, we get, as stated,

6 4
12=Z( I7""~7§")|)
=1

k:l

=24: (26: 17<k)_7lgk)|)

i=1 k=1

'[‘11*

a(r, v,;)

~
1t
[y

Proposition 5. Let A = {ay,0,,05},B= {f;,8,,05}be
two equilateral triangles of elements of E. Then

Z d(ay, B) < 30

i,j=1,2,3



If the sum is 30, then each
Z laEk) - ﬁ](k)l = 5
ij=1,2,3

for 1 <k < 6 (used for exhaustive search).

Proof: First we show that
INCANEEE
ij=1,2,3
foreachk=1,2,...,6.Thesum
T el - g0
4j=1,2,3

does not change when we simultaneously conjugate all the kth
components

(k) (k) (k) plk) plk) alk
o), of), o), g, gD (k)
and permute
o), o), o}
or
(k) plk) g(k)
{69, 6, 6501
foreachk=1,2,...,6.

Thus by Proposition 3 we can assume that a(lk), agk) =0
and agk) = 1. Then (again by Proposition 3) one of the ﬁl(.k)
(i=1,2,3)is 0 and one of them is 1. Number the O first
(i.e., B(lk) = () and the 1 last (ﬁgk) = (). Now we only have two
choices: ﬁgk) =0and Bg") = 1. In the first case

Z |al(k)_ B}k)l = 4
ij=1,2,3
and in the second case

Z |al(_k)_ﬁl(k)‘ =5

Hj=1,2,3

Thus

e
i,j=1,2,3

for each k from 1 to 6. Adding these six inequalities together,
we get, as stated,

6
30 = Z(
ij

3
= k) k
(3 1 -01)
4,j=1,2,3 \ k=1

> d(,8)

The second part of the proposition also follows.

(k) . g(i)
o™ = B; l)

lll. The Optimal Codes

Figure 1 gives the optimal odd-parity 8-bit ASCII upper-
case alphabetic code for the 3, 3, 4 case (2) and Fig. 2 an
optimal code for the 2, 4, 4 case (1). Why are they optimal,
even when we drop the alphabetic restriction and would be
willing to allow any even-parity six tuples?

Suppose we have a distance table satisfying (2), with
equalities instead of inequalities by Proposition 1. Break it up
into blocks as shown in Fig. 3. By Proposition 4 each row sum
within Blocks II and III must be 12. Since every entry is 2, 4,
or 6, this means that each row in Blocks II and III contains at
least two 2’s. Thus the total number of 2’s in Block II is at
least 6 and the total number of 2’s in Block III is at least 6.

By Proposition 5 the sum of the nine entries in Block I is
at most 30. This implies that Block I contains at least three
2's (7 X 4 + 2 X 2=32>30). Blocks I', II', and I1I' are just
transposes of Blocks I, II, and III, respectively, and, hence,
always have the same number of 2’s as Blocks I, II, and III.
We see that Fig. 1 has the minimal possible number of 2’s in
each block. This shows that Fig. 1 is a solution for Problem 2.
There are thirty 2’s in this table.

The same argument (see Fig. 4) shows that any distance
table satisfying (1) must have at least four 2’s in Block I,
four 2’s in Block II, and eight 2’s in Block III (7 X 2+ 9 X 4=
50 > 48). This proves that Fig. 2 has the minimal possible
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number of 2’s in each block and is a solution for Problem 1.
There are thirty-two 2’s in this table.

If 20 control functions are desired instead of 10, we can
use pairs of upper-case letters. We have found a constant dis-
tance 6 code that does this for 20 functions. This will be
reported elsewhere in a more general context.

IV. Uniqueness Results

The code of Fig. 2 with its three groups has a unique auto-
morphism crossing group boundaries. In this, O, H exchange
with K, L (or Q, V with U, R), with O corresponding to L and
H corresponding to K. Similarly, in Fig. 1, exchange X and Z
between groups. This forces V to interchange with O and L
with K. Also, in each problem, the two groups of equal size
can be swapped.
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Are our solutions unique up to the obvious operations? The
answer is yes for the 2, 4, 4 problem. This is easier to prove
than to write up, and we will merely assert it.

The answer is #o for the 3, 3, 4 problem. In fact, a differ-
ent distance table can even be achieved, although it can be
shown that the two triangles are unique up to obvious trans-
formations. Merely interchange U and A in Fig. 1, and observe
that Block II (upper right) becomes the 1nequ1va1ent (because
of the column of all 4’s) block

2424
4224
2244
This is also inequivalent to Block III, so it is a really different\

distance table. We shall say no more about these uniqueness
problems.



Table 1. Upper case ASCIl with even parity

A 0100 0001
B 0100 0010
C 1100 0011
D 0100 0100
E 1100 0101
F 1100 0110
G 0100 0111
H 0100 1000
I 1100 1001
J 1100 1010
K 0100 1011
L 1100 1100
M 0100 1101
N 0100 1110
0 1100 1111
P 0101 0000
Q 1101 0001
R 1101 0010
S 0101 001t
T 1101 0100
U 0oiol 0101
\Y% 0101 0110
w 1101 0111
X 1101 1000
Y 0101 1001
z 0101 1010

Table 2. Three groups of block control functions in the 2,4,4 case

Function Meaning

Group 0

ACK Acknowledgement

NAK Negative acknowledgment
Group 1

EOD End of data

EOT End of text

SOH Start of header

SOD Start of data
Group 2

WT Wait

QRY Query

ABH Abort and hang up

ABW Abort and wait
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FUNCTION CHARACTER 8=BIT ASCHI

GROUP 0......, ACK F 01000110
‘- NAK X 01011000
WT A 11000001
GROUP 1 QRY o 01001111
ABH z 11011010
‘\ ABW U 11010101
GROUP 2.-.., EOD v 11010110
\ EOT Q 01010001
..SOH L 01001100
“ SOD K 11001011
DISTANCE MATRIX
GROUPO | GROUP1 | GROUP2
\
ACK (F) 044 244 2424
GROUPO | NAK(X) | 404 424 4224
WT (A) 440 442 4242
QRY (O) 244 044 4422 3TWO's
GROUP1 | ABH (2) 424 404 2442 | ”per ROW
ABW (U) 4402 440 2244
EOD (V) 244 422 0444
EOT (Q) 422 442 4044
GROUP 2 | ¢y (1) 224 244 4404
SOD (K) 442 224 4440 |
A\ J
Y
3 TWO's
Fig. 1. Optimal code for the 3,3,4 case
FUNCTION CHARACTER 8-BIT ASCII
GROUP 0 ACK E 01000101 6
NAK.. T z nonore Fe 2
GROUPI....., EOD o 0001111
R EOT H 11001000
SOH Q 01010001
e SOD v 11010110
GROUP2.__., wI K 11001011
) QRY L 01001100
) ABH U 11010101
" ABW R 01010010
DISTANCE MATRIX
GROUPO | GROUP1 | GROUP2
ACK (E) 06 2 4| 4224 4TWO's
GROUP O | Nak (2) 60 4242 | 2442 } PER ROW
EOD (O) 24 0444 | 2244 |
EOT (H) 42 4044 | 2244
GROUPT | ¢om (@) 24 4404 | 4422
SOD (V 42 o | 4422
v 444 ; 3TWO's
WTU?)) 42 2244 | 0444 PER ROW
QRY (L 2 4 2244 | 4044
CROUP2 | aBH (u) 2 4 4422 4404
ABW (R) 42 4422 | 4440 |
H A ~ J
4TWO's 3 TWO's

Fig. 2. Optimal code for the 2,4,4 case

142



ay @ ag BiBBy | nmnRy
a
az’ BLOCK BLOCK
a 4 I I
3
B
BLOCK BLOCK
B
Y
% BLOCK BLOCK
Kt o 4
/3
Fig. 3. Block structure for 3,3,4
a2 B1BaBaBy | 7MYyY3Yy
a
1 BLOCK BLOCK
ay 6 I o
Ay
By BLOCK BLOCK
33 I 4 m
By
i
2| Bsock BLOCK
7 o' m' 4
%

Fig. 4. Block structure for 2,4,4
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